Zamierzchle czasy to rok 1963. Wtedy to wyszła drukiem monografia I.K. Hua "Harmonic Aanalysis of Functions of Several Complex Variables in the Classical Domains".
My tranzytywność otrzymaliśmy dzięki konektorom. Konektor t(Z,Z') przeprowadza Z' w Z. Jawnej postaci tego konektora jeszcze nie mamy, liczę ją dopiero, ale mamy przepis na niego: to pierwiastek kwadratowy z JJ'. Zresztą dla samej tranzytywności wystarczy nam jawna postać konektora t(Z,0). Wtedy z Z' do Z przechodzimy przez t(Z',0)t(Z,0)*. A tej macierzy jawną postać mamy.
Hua dowodzi tranzytywności używając nieco zmodyfikowanego SVD ("It is known that ..."). Robi to tak (on buduje transformację przeprowadzającą dowolne Z=P w Z=0):
No comments:
Post a Comment
Thank you for your comment..