After a month of silence, I’ve returned to sharing my thoughts with two new posts: “June Circles” and “From Spheres and Circles to Spacetime — Evolving Coordinates.” But to be honest, it didn’t go well. That month away seems to have cost me my coherence. A few loyal readers were glad to see me back—but less enthusiastic about the content. What I wrote came out muddled and confusing. So, it’s time to begin again—from scratch.
Interestingly, in theoretical chemistry, the phrase ab initio ("from the beginning") often appears in paper titles. I rarely see it in physics or mathematics, but here, it feels just right. This will be my third attempt, and I’m starting ab initio, from chaos toward order. As the saying goes, “On the third knock, the door opens.” Let’s see if it does.
My plan is to discuss the infinity. The infinity point of space and time. It all started with projective geometry of an ordinary two-dimensional plane. Parallel lines should meet at some point "at infinity". Different bundles of parallel lines meet at infinity at different points. Thus projective geometry added "the line at infinity". If we replace 2D plane by 3D space, we need to add a point at infinity for each bundle of parallel lines in ℝ3. This is widely used in computer aided graphics. Here is an excerpt from the paper "Beyond the Celestial Sphere: Oriented Projective Geometry and Computer Graphic" by Kevin G. Kirby, Mathematics Magazine, Vol. 75, No. 5 (Dec., 2002), pp. 351-366.
To infinity ...
You are driving a virtual car in a computer game. Look out through the windshield. The trees that line the highway are rushing past you. They are nicely displayed in perspective: they begin
far away as dots, but they grow taller as you race toward them. Next,
look ahead at the horizon. You see the sun. Unlike the trees, the sun
never gets closer to you. Still, it is certainly subject to some
transformations: you turn your car left, and the sun veers right.
The trees and the sun need to be represented inside the program somehow.
Ultimately, this depends on attaching parts of them to points in a
virtual space. One might think at first that a useful way to represent
any point would be to use Cartesian coordinates, a triple (x, y, z) of
real numbers. Taking your car to be located at the origin, a tree might
be centered at, say, (-20.42, 10.63, -94.37). Where is the sun? It is
very far away, perhaps at (9.34⨉109, 2.71⨉109, -1.23⨉1011).
But there is something strange about these large numbers. It seems
pointless to waste time (and numerical precision) decrementing such big
numbers by a few tens as our car drives on toward the sunset. We would
like to simplify things by somehow locating the sun at infinity.
One uniform way to represent both ordinary points and points at infinity is to use four numbers instead of three. Here's how it works. Take the point (2, 3, 4). Instead of representing it as a column vector in ℝ3, we tack a 1 on the end and represent it as a column vector in ℝ4 : x = [2 3 4 1]T. This representation is not meant to be unique: we can multiply this column vector by any positive number and we will say it represents the same point.(...)
![]() |
| You are driving a virtual car in a computer game |
That may be good for traveling in space. But we want to travel in space and in time. For lines in space-time we sometimes use the term world line. There are three kinds of world lines: we can travel with a speed that is slower than the speed of light, faster than light, or with exactly the speed of light. There will be, perhaps, three kinds of infinity points. There are two known mathematical ways to achieve that, using a trick similar to that used in projective geometry. The first way, the standard one, is to start with space-time and add two extra dimensions, that is to add a hyperbolic plane with signature (+1,-1), and then to study the projective null cone there. This is called Möbius geometry. The second way, the way I am following, is the Lie sphere geometry. We start with 3D space alone, and time emerges automatically, related to the radius of a sphere. We add three extra dimensions to the three dimensions of space, we add extra dimensions with signature (+1,-1,-1), and take the projective null cone there. The end result is mostly the same - we end up with six dimensions and signature (+1,+1,+1,-1,+1,-1). But, in the Lie sphere geometry approach, we obtain a reacher structure. I like this second approach better, as it fits the possibility of taking into account the possible 'ether', or 'quantum vacuum', with a preferred reference frame.
In the previous two posts I was oscillating between circles and spheres. Finally I decided to take spheres, and restrict to circles only when it will be more convenient for graphical illustrations. So, let us start, ab initio.
There are two ways of playing with geometrical constructs. The first way goes back to Descartes - we use coordinates. The second way goes back to Euclid - it is coordinate-free. Nowadays, in practice, we often first use coordinates, and only after the result is obtained, we work on expressing our result in a coordinate-free way. I will follow this path. We will be using coordinates at first, and only then search for a way to understand what have been done in a more elegant and, perhaps, deeper way.
Notation.
Let V be a 6-dimensional real vector space with the quadratic form Q of signature (4,2).
Note: In previous
post I have used Q to denote the Lie quadric. But since now we start ab
initio, therefore the symbol Q is being cleared from its previous
meaning. We will use X,Y,... to denote vectors of V. The scalar product in V will be written as X·Y. Thus
Q(X)=X·X. (1)
We denote by N the null cone in V:N = {X∈V: Q(X) = 0}. (2)
In V⟍{0} (V with the removed origin) we introduce the equivalence relation
X∼Y if and only if Y = λX, λ>0. (3)
We denote by PV and PN the sets of equivalence classes of vectors in V⟍{0} and in N⟍{0}:
PV = V⟍{0} / ℝ×>0, (4)
PN = N⟍{0} / ℝ×>0, (5)
where ℝ×>0 is the multiplicative group of all strictly positive real numbers.
We denote by π the natural projection from V to PV. It maps every non-zero X in V to its equivalence class [X].
V is 6-dimensional, N⟍{0} is 5-dimensional, and so PN is 4-dimensional. That is the central object of our studies. As it will be seen in the future, it is the (doubly) compactified Minkowski space, diffeomorphic to the product S3⨉S1. It was denoted Q+ in previous posts.
We can use π to equip PN with a natural topology and with a differentiable structure. We will do it later.
The flat Minkowski space-time M will be identified as a particular open, dense set in PN. First we will do it using coordinates. For this we will use orthonormal bases for M and for V. Using an orthonormal basis in M we identify M with ℝ3,1. Thus the scalar product in M can be written as
x·y = xTηy, (6)
where η is the diagonal matrix η=diag(1,1,1,-1). The quadratic form q of M is then
q(x) = x·x = (x1)2 + (x2)2 + (x3)2 - (x4)2. (7)
Note: sometimes we may use the letters x1=x, x2=y, x3=z, x4=t. We will also use the notation x = (x,t), where x is a vector in ℝ3, and t is a real number (time). In this case x·x = x2 - t2.
A basis EA in V, (A=1,2,...,6), is called orthonormal if EA·EB =GAB, where G is the diagonal matrix
G = diag(1, 1, 1, -1, 1, -1). (8)
We denote by XA the coordinate of X with respect to such a basis: X = XA EA.
The embedding
We will now define the embedding of M into PN. It is defined by the following map from M to V
X(x) = ( x, ½(1 - q(x, t)), -½(1 + q(x, t)) ). (9)
Then the embedding, which will be denoted by τ is defined by
τ(x) = [X(x)]. (10)
Exercise 1. Prove that if τ(x) = τ(x'), then x=x'.
We notice that if X = X(x), q = q(x,t), then X5 - X6 = 1, X5 + X6 = -q. We define
X0 ≐ X5 - X6. (11)
X∞ ≐ X5 + X6, (2)
Thus the embedding formula looks simpler if we use, instead of the two basis vectors E5 and E6, vectors E0 and E∞ defined as
E0 = ½(E5 - E6), (13)
E∞ = ½(E5 + E6). (14)
Using these coordinates the embedding formula takes the form:
X(x) = xμEμ - q(x)E∞ + 1 E0. (15)
The vectors E0 and E∞ are now in N (Why?), therefore they define two points p0 = [E0], and p∞ = [E∞] in PN. We also notice that
E0·E∞ = 1/2. (16)
The point p0 is the image τ(0) of the origin x = 0 of M. The point p∞ does not correspond to any point in M, it is not in the set τ(M). It is one of the points of the infinity set, which we define as
M∞ = {[X]: X0 = 0} = {[X]: X5 = X6}. (17)
In the next post we see that PN is a disjoint union of three sets
PN = M+ ∪ M- ∪ M∞, (18)
where
M+ = {[τ(x)]: x ∈ M}, (19)
M- = {[-τ(x)]: x ∈ M}. (20)
Thus PN, the doubly compactified Minkowski space, consists of two copies of M, and of the infinity set M∞. We will discuss in details the structure of M∞, and also the intuitive meaning of these 'points at infinity'.
In all this I am borrowing ideas from what is called 'oriented projective geometry', as described in the computer graphics review paper by Kirby, mentioned at the beginning. In oriented projective geometry one cares about the direction of the line. For space-time that means that we want to distinguish, in particular, between the future and the past. This is not usually done in the standard conformal compactification of the Minkowski space. I am not so sure about the necessity of distinguishing between left and right, but if it gives better algorithms for the computer graphics, perhaps, for efficiency reason, it is also exploited in the Nature.
P.S. 26-06-25 17:09 Anna was kind to send me the following information:
"I know you're busy and excited about your new post, but I can't resist showing you these dual turrets of Varlamov, because it seems to me that they express exactly what you said about two-sided Universe. These are «two three-dimensional projections (SO(4, 2)-towers) of the weight diagram of the Lie algebra so(4, 4) of the rotation group SO(4, 4) of the eight-dimensional pseudo-Euclidean space R(4,4)."


ReplyDeleteA fresh bird's eye view is always welcome! Especially when the object we are trying to focus at tends to dissolve at the horizon of human understanding. Each one has to make one's own way there.
Your explanation of the difference between Mobius geometry and Lie spheres geometry approaches is very helpful. The first one seems more straightforward but we won't take easy ways, OK.
You say that the 4th dimension of time emerges naturally as the oscillation of the sphere radius. You mean 3d sphere S3, right? In case of S2, radius changes can give only the 3rd dimension.
Now I proceed with embedding my mind further into projective spaces. Getting used to formulas (9)--(20).
This start ab initio seems to be highly promising, thank you!
r=t is the radius of a 2-sphere in R3.
DeleteGenerally, the task to embed flat Minkowski space-time, which is noncompact, into PN, which is doubly compactified Minkowski seems a bit contrintuitive. Formally, i know that compactification is larger than the initial space compactified, since a point at infinity should be added, but is it possible to embed an uncompact infinite space into compact one of the same dimension?
ReplyDeleteThink of the one-point compactification of R2. R2 is noncompact, S2 is compact. They are of the same dimension. In this case we add just a point at infinity. In projective geometry we add a line at infinity. We get S2 with identified opposite points. The line at infinity becomes just the equator of the sphere, with identified opposite points. Would you like to see how it is done in details?
DeleteI know that S2 with identified opposite points is the projective plane RP2. Another model of RP2 is semisphere with the opposite points at its edge (equator) identified. Now I realized that this equator with identified opposite points is what the line at infinity becomes. Thank you!
DeleteАнна, вас ведь не удивляет, что плоскость легко наматывается на тор. Аналогично и некомпактная песвдоевклидова плоскость наматывается на компактную проективную плоскость. Просто проективная плоскость получается из тора скручиванием его задающих окружностей в восьмёрки и склеиванием этих восьмёрок в окружности.
DeleteIgor, thank you, this seems more or less digestible for me. I will think it over for a while.
DeleteЗамечу, что изотропные прямые линии псевдоевклидовой плоскости наматываются на экваторы тора, которые затем факторизуются (отждествлением противоположных точек) на проективной плоскости.
DeleteIgor, thank you for the note, it helps to understand the matter deeper. Please forgive my ignorance, torus has two equators - internal and external, right? And how many isotropic lines are there in the pseudo-euclidean plane? I am trying to visualize the picture.
DeleteЗдесь под экваторами тора подразумеваются его задающие окружности, а их у него бесконечно много. Изотропных линий также бесконечно много, поскольку каждая точка плоскости порождает две прямые.
DeleteSo, did I get it right that each parallel and meridian intersecting at one point on the torus correspond to two isotropic lines intersecting at one point on the pseudo-Euclidean plane?
DeleteДа, правильно.
DeleteYou did not mention N, which is important.
ReplyDeleteV is 6D
PV is 5D
N is 5D subset of V
PN is 4D
x is 4D
X(x) is a 4D surface in V
But in fact X(x) is in N.
So X(x) is a 4D surface in N.
We have projection pi - taking equivalence classes,
tau is a composition first take X(x), then apply pi to go to [X(x)]. To see how it works do the Exercise that I have just added after (10)
sorry, not subtracting, but adding (2) and (3)
ReplyDeleteI knew you will notice it!!!
ReplyDeleteHow these pyramids appear is explained in the previous post: https://dzen.ru/a/aChkNGsiOVhufpQD. For more details, see the article [11] of this post.
ReplyDeleteThanks, Vadim! Your knowledge and your originality and creativity are extraordinary!
DeleteThere is also an English translation of this post: https://www.blogger.com/blog/post/edit/4542324252128318696/310140036043302651
ReplyDeleteHi,
DeleteThat link does not work on my device. From looking at the URL, I infer you were logged in and editing on blogger?
I think this link goes to the correct place (as it looks like the dzen.ru page) : https://vadimvarlamov.blogspot.com/2025/05/spin-and-fourth-dimension.html?
Thank you,
DM
Yes, of course, https://vadimvarlamov.blogspot.com/2025/05/spin-and-fourth-dimension.html
DeleteThank you,
VV
:)))))))))
ReplyDeleteI'm so glad when you and Vadim are moving towards the point where your paths can meet.
You are a wonderful facilitator!
ReplyDeleteYes, I am like the "limit line" in Lobachevsky geometry, which is the "trajectory of a bundle of parallel lines" connecting those who go parallel paths but meet each other only at an infinitely distant point. I can't wait that long!
ReplyDeleteSeriously speaking, I am very interested in your communication. Not many minds in the world are occupied with the problems discussed here, and you both consider them important. And so do I.
Vadim recommended me the book by V. F. Kagan "Fundamentals of Geometry: Lobachevsky Geometry". A beautiful and amazing world - sometimes it resembles what you do here with the help of projective geometry, but there it seems even more natural. As Sergey Vekshenov said, "Lobachevsky Geometry is an invitation of infinity to our everyday life."
Thanks. Got the book (in Russian).
ReplyDeleteProfessor,
ReplyDelete"...we obtain a reacher structure."
-> richer?
-----------------------------------------------------
"I like this second approach better, as it fits the possibility of taking into account the possible 'ether', or 'quantum vacuum', with a preferred reference frame."
"For space-time that means that we want to distinguish, in particular, between the future and the past. This is not usually done in the standard conformal compactification of the Minkowski space."
Perhaps you had already alluded to a preferred time-frame as kairos?
[...]
[...]
Хронос and Кайрос: neither really tied up with space-time. Kairos would likely need to be without extension. Chronos would instead be an emergent property from extension, or, that'd seem to be implied if it's said it comes from the radius... also the idea of time being related to thermodynamics and entropy is new to me, and again seems to imply it'd be emergent. So, should there a preferred time reference frame like there's a preferred spatial reference frame? Or at least the possibility for there to be one opens up much richer or far reaching structures. Lots to ponder on the nature of time
-----------------------------------------------------
Also, if you can, please comment on how projective geometric operations can "clean up" or transform equations that have unwieldy formulations, if you're familiar with that as a generalized application.
Thank you,
DM
[...]
Delete"Пространство и Время должны быть квантованы!
И вот тогда — на самом деле, это было ранним утром — я начал говорить о том, что в результате этого в пространстве должна быть структура. И это пространство должно быть квантовано! Так вот к чему приводят все эти эксперименты [смеется] — все начинается очень давно, и я уверен, что у всех вас, у каждого из присутствующих здесь, возникнет много идей.
Идей будет становиться все больше, и вы придете к чему-то подобному, и тогда вы начнете удивляться. Итак, однажды рано утром, около четырех часов утра, я размышлял над идеей де Бройля о квантовом потенциале. Квантовый потенциал говорит о том, что если где—то есть щель, и фотон приближается к ней с какого—то направления - или частица - эта частица знает, что щель существует! Это то, что показывает второе решение уравнения квантовой механики! Разве это не странно? [смех] У него нет глаз. Вероятно, именно по этой причине она была отвергнута в 1927 году на Сольвеевском конгрессе. Де Бройль, как я уже говорил, закрыл свои книги.
В любом случае, этот квантовый потенциал теперь становится реальностью. Дэвид Бом довольно много об этом пишет. И это просто означает — и это одна из интерпретаций этого — что у нас есть два вида времени, и [смеется] секрет в том, что нам нужно квантовать время, чтобы этот квантовый потенциал сработал. И при квантовании времени у вас было бы время, движущееся в хроносе, — у нас есть хронос. Это то время, которое мы знаем, то время, которое есть у вас, когда вы включаете свою радиостанцию. Хронос [пишет слово на доске], это время человека. Затем есть еще один, кайрос, который является временем Бога. Это греческие слова. Это время Бога. А это время человека — Хронос. Звонит ли ваш будильник по утрам? И вам нужно с кем-то встретиться в такое-то время [смеется].
Но, в любом случае, казалось, что именно здесь могли бы появиться хронос и кайрос. Я не знаю, как это изобразить, потому что обычное время течет примерно так, как линейная функция, и время увеличивается. Но тогда, если бы время остановилось, если бы был промежуток, узнали бы мы об этом? Прямо сейчас могут быть промежутки во времени, и, поскольку мы движемся по хроносу, мы бы об этом не знали, не так ли?
Но в любом случае, если у вас есть такие периоды, как этот, у вас есть промежутки. Другими словами, у вас есть и квантование пространства, которое кажется таким понятным — [рисует что—то], и одно из них - пространство, а другое - квантование времени. А это кайрос, а это хронос — я имею в виду, что здесь есть два времени: время хроноса и время кайроса.
Но что происходит здесь, на Кайросе? Какова скорость передачи информации? Вы знаете, в биологических системах вас учат, как это указывает существу, что делать. У нас есть люди, которые говорят другим, что делать. Но как насчет кайроса? Это очень важный момент.
[...]
DeleteВопрос от Флетчера Джеймса: Вы хотите сказать, что скорость передачи данных была бы бесконечной, или...?
Мун: Прямая или мгновенная передача. Это верно! Так что, если у вас была мгновенная передача, я не могу сказать, как долго она длится. Но, в любом случае, все останавливается, может быть, на микросекунду, может быть, на фемтосекунду, или что-то в этом роде. Я не знаю.
Но, в любом случае, мгновенная передача не требует много времени, не так ли? [смех]
Таким образом, это означает, что каждая частица знает обо всех других частицах во Вселенной, что в точности соответствует идее Де Бройля и Дэвида Бома, который заново открыл ее. Они вместе работали над этой общей идеей вплоть до смерти де Бройля, в начале прошлого года, по-моему, как раз в прошлом году.
В любом случае, это, по-видимому, соответствует тому, что у нас действительно есть средство, с помощью которого каждый из нас должен в какой-то степени осознавать все остальное во Вселенной. Конечно, мы можем осознавать это, но можем и не понимать. Это совсем другое дело [смеется].
Итак, во всяком случае, я думаю, что мы живем в такой ситуации, когда есть знание о том, что происходит во Вселенной, даже несмотря на то, что на расстоянии 155 000 световых лет от нас произошла вспышка сверхновой. И подумать только, что исходящий от него свет и исходящее от него излучение могут сохраняться вместе на протяжении 155 000 световых лет. Это довольно большое расстояние. Только подумайте, как трудно держаться вместе, даже если вы идете с кем-то, даже если вы проходите один квартал [громкий смех]. Но здесь эти волны держатся вместе. И, кажется, вместе летят какие-то нейтрино. А нейтрино - это частица. Кажется, это удалось. Некоторым из них это удалось, по крайней мере, по последним подсчетам, их было семь [смех].
Квантование пространства с помощью [...]
Итак, квантование пространства и времени! Это поразило, как удар молнии. Затем, следующее, что пришло мне в голову, было: ну, если пространство и должно быть квантовано, то оно должно быть квантовано с наивысшей степенью симметрии. И это сразу же говорит о том, что это [...]"[...]
Ark's EEQT kind of does the Bohm morph of quantum with classical but on the fly instead of having something deterministic. EEQT has a Fock space-like quantum sector and a differential geometry-like classical sector. The Fock space could handle the connection with all particles in the universe state including past and present ones. The differential geometry could be a local Bohm-like pilot. There's probably the time of a metric and the time of a propagator in there somewhere.
DeleteVery interesting. Differential geometry..
DeleteYou know where this is going:
On Conformal Infinity and Compactifications of the Minkowski Space:
"The paper is aimed at mathematicians interested in mathematical properties of Minkowski space related to projective geometry, and at mathematical physicists interested in the subject. Relativists will find next to nothing of interest for them in the material below (perhaps except of a warning about
how errors can easily propagate). They have their own aims and techniques and, as a rule, are usually not interested in generalizations going beyond four space–time dimensions."
"4 From Einstein’s static universe to PN"
So, what we mark out as a negative in the signature for PN is like the "imaginary" 4th space-like dimension in Minkowski spacetime, which I figure is being developed specifically to work on local areas of the manifold..
Is the overarching 6-dimensional signature with two negatives--two time dimensions? More pointedly, I think I recall you'd expressed somewhere a particular interest in E8 (is my memory correct?).. John Baez may help me here:
"So what's the basic idea? Let me summarize two semesters of grad school, and tell you the basic stuff about Lie groups..." week 63: https://math.ucr.edu/home/baez/week63.html
Maybe I can get up to speed on differential geometry. We're looking at SO(4,2)... What I'd edited out above on how to quantize space invoked 3D platonic solids, where they structure atomic nuclei coherently by nesting tetrahedron->cube->octahedron->icosahedron->dodecahedron; singly forming Palladium and doubly forming Uranium... Here:
Platonic Solids in All Dimensions https://math.ucr.edu/home/baez/platonic.html
there are 6 4-th Dimensional regular polytopes...
It looks to me like the idea here is to tile space with a specific Lie algebra/group structure. So if that's the fundamental extension available everywhere, maybe the excitations can be described by the simpler symmetries of octahedral/hexahedral and icosahedral/dodecahedral in 4D; but one thing Baez mentioned is that the 600-cell looks like a bridge from E8. Earlier in the Spin Chronicles I know we were dealing with 8th-Dimensional structures... Lots to work on.
Thanks, John. I need to review EEQT and pilot-wave theory. I had posted that almost as much for his ideas therein as just the mere mention of kairos, mentioned also earlier in this series...
Vadim Varlamov above is going from SO(4,2) to SO(4,4) via known things about the hydrogen atom to new things about the rest of the periodic table. This relates to tiling for getting a 4-dim Feynman Checkerboard out of the 8-dim one. The vertices would be Cl(8) with SO(4,2) and SU(3)xSU(2)xU(1) in the 4-dim case coming from the SO(8) of the 8-dim case. This would be bivectors for the Fock space bosons.
DeleteYou would also have Cl(8) spinors for the fermions and the Cl(8) middle grade for the differential geometry thus another SO(4,2) in there with a conformal metric for working on a complex spacetime. Standard model gauge theory connections, volume forms with Projective SL(4,R) G-structure, and a Feynman propagator/generalized proper time seem like needed things too in the differential geometry.
The two time-like dimensions of SO(4,2) can do lots of things like time travel even via complex spacetime. Baez and Tony Smith in an Irving Segal obituary talked about the two times being responsible for expansion of the universe and it related to an Einstein metric vs the Minkowski one.
DeleteJohn, I'm sorry, but this "two times" of yours is somehow jarring. Time (which is also a parameter of evolution) is the same for everyone, but the metric generated by evolution depends on how we look at it. At first glance, it is like Minkowski's, but if you look closely, you can see other metrics.
DeleteAfter you get down to a 4-dim metric, yes it could be the same four dimensions but be effectively Minkowski, conformal, degenerate, etc. metric in different places. There's always I think a conformal structure group around after you get to 4-dim.
DeleteArk, can I ask one more question: if E0 E∞ = 1/2 (16), then E0 and E∞ are not orthogonal. However, we take them as basis vectors, is that okay?
ReplyDeleteYes, it is okay - as long as we remember that they are not orthogonal!
ReplyDeleteI thought I will have a new post yesterday as "Sunday Special - nice torus related to our discussion. But I got stuck with numbers. Still working on them.
You see, I don't clearly understand why we choose particularly these two points E0 and E∞ from the whole 5-dim N to get the two points p0 = [E0], and p∞ = [E∞] of PN? What is so remarkable that distinguishes E0 and E∞ from the other points of N?
ReplyDeleteVery good question. I will address it. Soon. A short answer is: any two such points determine an embedding of space-time into PN. These particular points determine our embedding. That is a short answer without explanation, for impatient!
ReplyDeleteThanks a lot. It was not quite easy to formulate this question:)
ReplyDeleteAll points were equal before we have chosen the embedding, but after that, these two became special. Probably, these special points are something like branching points. Or the points at which we would fold a torus to obtain 'figures of eight', like Igor Bayak suggests.