Saturday, January 14, 2023

Imagine infinity

The problem from the previous note "Imagine Infinity - A Challenge":

We are in 4D, coordinates X,Y,Z,W. The infinity is given by the intersection of these two cylinders:

1) X+ Y+ Z2 = 1

2) Z+ W2 = 1

Let us simplify. Skip Y. This corresponds to spacetime being only 1+1 dimensional. So we have

1) X+ Z2 = 1

2) Z+ W2 = 1

This is a curve in 3D. Let us plot it. This is an intersection of two cylindrical surfaces, perpendicular to each other. We ask Mathematica to plot it:

h = x^2 + z^2 - 1;  

g = z^2 + w^2 - 1;

ContourPlot3D[{h == 0, g == 0}, {x, -1, 1}, {z, -1, 1}, {w, -1, 1}, 

 MeshFunctions -> {Function[{x, z, w}, h - g]}, 

 MeshStyle -> {Thickness[0.05], Red}, Mesh -> {{0}}, 

 ContourStyle -> 

  Directive[Blue, Opacity[0.1], Specularity[White, 30]], 

 PlotPoints -> 60, SphericalRegion -> True]

Here is the result:

 



Instead of two spheres touching each other at two points, north and south poles, we have now two circles. Seems to be correct, but I am not happy with skipping one (and, in fact, two) space dimension(s).

P.S.1. The reader (Bjab) commented that the red circles are not real "circles", they are ellipses instead. To verify if it is indeed the case I have changed the view. And indeed, here is what we get:

Ellipse! Topologically it is (homeomorphic to) a circle. Metrically it is not. But here the metric is unnatural. I will explain it in the next post.

17 comments:

  1. "Seems to be correct, but I am not happy with skipping one (and, in fact, two) space dimension(s).".

    Take a look here:

    https://en.wikipedia.org/wiki/Villarceau_circles

    ReplyDelete
  2. "This is a curve in 3D. Let us plot it. This is an intersection of two cylinders, perpendicular to each other.".

    But why do these toruses have to be perpendicular?

    ReplyDelete
  3. h = x^2 + z^2 - 1;

    g = z^2 + w^2 - 1;

    ContourPlot3D[{h == 0, g == 0}, {x, -1, 1}, {z, -1, 1}, {w, -1, 1},
    MeshFunctions -> {Function[{x, z, w}, h - g]},
    MeshStyle -> {Thickness[0.1], Yellow}, Mesh -> {{0}},
    ContourStyle ->
    Directive[Blue, Opacity[0.5], Specularity[White, 30]],
    PlotPoints -> 60, SphericalRegion -> True]

    ParametricPlot3D[{(3 + Cos[z]) Cos[x], (3 + Cos[z]) Sin[x],
    Sin[z]}, {x, 0, 2 Pi}, {z, 0, 2 Pi}, Mesh -> {{0}}]

    I am trying to cut the above torus. I don't know at the moment how to do this in Mathematica.

    ReplyDelete
  4. M: "Cylinders" istead of "toruses".

    ReplyDelete
  5. Bjab -> Ark

    Co prawda nie wiem o czym są Twoje notki, dlaczego suma kwadratów współrzędnych ma być równa jeden, która współrzędna ma być czasową w tej Twojej "1 + 1 spacetime",
    to jednak
    nie dam sobie wcisnąć, że te dwie czerwone krzywe na powyższym rysunku są okręgami.

    ReplyDelete
    Replies
    1. Thank you for your comment. I have no choice - will have to explain the genealogy of the problem. Will do it tomorrow morning.
      Are they real circles? Another good question.

      Delete
    2. Bjab - Ark
      Wyraźnie widać, że to są elipsy.

      Delete
    3. Wyraźnie widać, że to są elipsy.

      Delete
  6. @Bjab

    "Co prawda nie wiem o czym są Twoje notki, dlaczego suma kwadratów współrzędnych ma być równa jeden, która współrzędna ma być czasową w tej Twojej "1 + 1 spacetime",".

    A zatem, zdaje mi się, że suma współrzędnych ma być 1, gdyż to są powierzchnie walcowe (cylindryczne).

    Walec (cylinder) opiszesz tak:

    x^2 + y^2 <= r^2
    0 <= z <= h,

    gdzie h jest wysokością tego walca, a r jest jego promieniem, przy czym x,y,z to współrzędne przestrzenne, a z (albo dowolna inna współrzędna przestrzenna, zależnie jak wybierzesz) musi zawierać się pomiędzy 0 a wysokością walca.

    Tu jednak mamy walec bez wnętrza, stąd <= zamieniamy na =.

    Współrzędną czasową zaś zdaje mi się tutaj być W.

    Tu mamy dwie powierzchnie cylindryczne prostopadłe do siebie, są dobrze widoczne na pierwszym rysunku.

    ReplyDelete
  7. @Bjab

    "Wyraźnie widać, że to są elipsy.".

    Tak, ale wyobraź sobie, że masz np. okrąg dany wzorem: x^2 + y^2 = 1.

    I masz elipsę x^2/4 + y^2 = 1.

    Teraz zauważ, że przekształcenie (x, y) -> (x/2, y) to przekształcenie ciągłe (homomorfizm), a zatem z perspektywy topologicznej możesz przekształcić okrąg w elipsę bez rozrywania go.

    ReplyDelete
    Replies
    1. Bjab -> Mathilde S.
      homeo

      Delete
    2. @Bjab

      Tak, fakt. Homomorfizm dotyczy algebry, a homeomorfizm to izomorfizm struktur topologicznych. Masz rację.

      Delete
  8. This comment has been removed by the author.

    ReplyDelete
  9. This comment has been removed by the author.

    ReplyDelete
  10. "Z^2 + W^2 = 1".

    This is not a cylinder. It is a cylindrical surface. A cylinder would be if:

    "Z^2 + W^2 <= 1".

    ReplyDelete
  11. h = x^2 + z^2 - 1;

    g = z^2 + w^2 - 1;

    ContourPlot3D[{h == 0, g == 0}, {x, -Pi, Pi}, {z, -Pi, Pi}, {w, -Pi,
    Pi}, MeshFunctions -> {Function[{x, z, w}, h - g]},
    MeshStyle -> {Thickness[0.1], Yellow}, Mesh -> {{0}},
    ContourStyle ->
    Directive[Blue, Opacity[0.5], Specularity[White, 30]],
    PlotPoints -> 60, SphericalRegion -> True]

    With this code in my opinion you can best see what it is.

    ReplyDelete
  12. I tried my seeing spheres by squishing the time-like W on this 1-dim less version and I do get actual circles which makes sense since the ellipse kind of comes from expanding into an extra dimension. Course I was "seeing" a torus instead of an ellipsoid and each of my two spheres would really come from halves of two ellipsoids instead of from one ellipsoid each. It's so hard to visualize connections in 4D; I remember that from trying to visualize 4-dim root vector polytopes.

    Given that spacetime is always one less dimension for this exercise, I'm guessing this might relate to the Shilov boundary of a 5-dim hyperball or to a Cartesian product via the Shilov boundaries of a time disk and a space 4-dim hyperball? (not that I have any idea how Shilov boundaries relate to conformal infinity)

    ReplyDelete

Thank you for your comment..

The Spin Chronicles (Part 10) - Dressing up the three involutions

  This post is a continuation of The Spin Chronicles (Part 9): Matrix representation of Cl(V) . In Greek mythology, the three Graces—Aglaea...